If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-w^2=-596
We move all terms to the left:
-w^2-(-596)=0
We add all the numbers together, and all the variables
-1w^2+596=0
a = -1; b = 0; c = +596;
Δ = b2-4ac
Δ = 02-4·(-1)·596
Δ = 2384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2384}=\sqrt{16*149}=\sqrt{16}*\sqrt{149}=4\sqrt{149}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{149}}{2*-1}=\frac{0-4\sqrt{149}}{-2} =-\frac{4\sqrt{149}}{-2} =-\frac{2\sqrt{149}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{149}}{2*-1}=\frac{0+4\sqrt{149}}{-2} =\frac{4\sqrt{149}}{-2} =\frac{2\sqrt{149}}{-1} $
| 17x+8=127 | | 273=188-y | | P(x)=-10x^2*120x-150 | | x+18=x-9 | | 6(x+10)=-30x= | | 11(3.2-k)=16.5 | | k·0.6=3.6 | | w+5w=6w-w | | 7c(4c+3)=0 | | -5+m/3=(-17) | | 11q+7+2q=4q+16 | | 6(x+5)=36x= | | -1/5(10-20u)-u=1/3(6u-12) | | 7x+11=−8x−16 | | -6+b/3=11 | | 6(x-10)=-18x= | | 5x6=6× | | 9=p•20 | | 32=s-29 | | 5x^-36x+36=0 | | 6+b/9=12 | | 5y-8(y=30 | | X-15x=22 | | −2x+22=−40 | | -4(-c-10)=16 | | −3(2m−8)+8m=14 | | 2+b/5=12 | | t/2/3=18 | | 2x+0.50=45 | | 6x-5x+x=1-3-18 | | 7(7+9)=8x(8x+6x | | 90-x=7x-2 |